Lvc.Infra.SafeFirstInfiniteSubset
Require Import CSet Util InfiniteSubset OrderedTypeLe.
Set Implicit Arguments.
Section SafeFirst.
Variable X : Type.
Context `{OrderedType X}.
Variable p : @inf_subset X H.
Hypothesis Q : X → Prop.
Hypothesis Qpr : Proper (_eq ==> iff) Q.
Hypothesis Qsub : ∀ x, Q x → p x.
Inductive safe : X → Prop :=
| Isafe n : (¬ (Q n) → safe (proj1_sig (inf_subset_inf p n))) → safe n.
Lemma safe_eq x y
: safe x → x === y → safe y.
Proof.
unfold Proper, respectful; intros.
general induction H0; eauto.
econstructor; intros.
- eapply H1; eauto. rewrite H2; eauto.
eapply inf_subset_inf_ext; eauto.
Qed.
Global Instance safe_proper
: Proper (_eq ==> iff) safe.
Proof.
unfold Proper, respectful; split; eauto using safe_eq.
Qed.
Lemma exists_is_safe
: (∃ x, Q x) → ∃ n, safe n.
Proof.
intros EX. destruct EX. eexists x. econstructor; intros.
exfalso; eauto.
Qed.
Lemma safe_upward n
: safe n → ¬ Q n → safe (proj1_sig (inf_subset_inf p n)).
Proof.
intros. invt safe. eapply H2. eauto.
Defined.
Hypothesis comp : ∀ n, Computable (Q n).
Fixpoint safe_first n (s:safe n) : X.
refine (if [ Q n ] then n else safe_first (proj1_sig (inf_subset_inf p n)) _).
destruct s; eauto.
Defined.
Hypothesis P : X → Prop.
Hypothesis I : X → Prop.
Hypothesis PQ : ∀ n, P n → Q n.
Hypothesis Step : ∀ n, I n → ¬ Q n → I (proj1_sig (inf_subset_inf p n)).
Hypothesis Final : ∀ n , I n → Q n → P n.
Fixpoint safe_first_spec n s
: I n → P (@safe_first n s).
Proof.
unfold safe_first.
destruct s.
- simpl. destruct (decision_procedure (Q n)); eauto.
Qed.
End SafeFirst.
Fixpoint safe_first_ext X `{OrderedType X} (p:@inf_subset X H) P Q n
(PC:∀ n, Computable (P n))
(QC:∀ n, Computable (Q n))
(PS:safe p P n)
(QS:safe p Q n)
(EXT:(∀ x, P x ↔ Q x)) {struct QS}
: safe_first PC PS = safe_first QC QS.
Proof.
destruct PS. destruct QS. simpl. repeat cases. reflexivity.
- exfalso. eapply n0. rewrite <- EXT. eauto.
- exfalso. eapply n0. rewrite EXT. eauto.
- eapply safe_first_ext. eauto.
Qed.
Lemma safe_impl X `{OrderedType X} (p:@inf_subset X H) (P Q: X → Prop) n
: safe p P n → (∀ x, P x → Q x) → safe p Q n.
Proof.
intros. general induction H0; eauto.
econstructor; intros. eapply H1; eauto.
Qed.
Lemma safe_impl' X `{OrderedType X} (p:@inf_subset X H) (P Q: X → Prop) n
: safe p P n → (∀ x, _le n x → P x → Q x) → safe p Q n.
Proof.
intros. general induction H0; eauto.
econstructor; intros. eapply H1; eauto.
intros x. destr_sig. simpl in ×. dcr. intros.
eapply H2; eauto.
rewrite <- H5. eauto.
Qed.
Set Implicit Arguments.
Section SafeFirst.
Variable X : Type.
Context `{OrderedType X}.
Variable p : @inf_subset X H.
Hypothesis Q : X → Prop.
Hypothesis Qpr : Proper (_eq ==> iff) Q.
Hypothesis Qsub : ∀ x, Q x → p x.
Inductive safe : X → Prop :=
| Isafe n : (¬ (Q n) → safe (proj1_sig (inf_subset_inf p n))) → safe n.
Lemma safe_eq x y
: safe x → x === y → safe y.
Proof.
unfold Proper, respectful; intros.
general induction H0; eauto.
econstructor; intros.
- eapply H1; eauto. rewrite H2; eauto.
eapply inf_subset_inf_ext; eauto.
Qed.
Global Instance safe_proper
: Proper (_eq ==> iff) safe.
Proof.
unfold Proper, respectful; split; eauto using safe_eq.
Qed.
Lemma exists_is_safe
: (∃ x, Q x) → ∃ n, safe n.
Proof.
intros EX. destruct EX. eexists x. econstructor; intros.
exfalso; eauto.
Qed.
Lemma safe_upward n
: safe n → ¬ Q n → safe (proj1_sig (inf_subset_inf p n)).
Proof.
intros. invt safe. eapply H2. eauto.
Defined.
Hypothesis comp : ∀ n, Computable (Q n).
Fixpoint safe_first n (s:safe n) : X.
refine (if [ Q n ] then n else safe_first (proj1_sig (inf_subset_inf p n)) _).
destruct s; eauto.
Defined.
Hypothesis P : X → Prop.
Hypothesis I : X → Prop.
Hypothesis PQ : ∀ n, P n → Q n.
Hypothesis Step : ∀ n, I n → ¬ Q n → I (proj1_sig (inf_subset_inf p n)).
Hypothesis Final : ∀ n , I n → Q n → P n.
Fixpoint safe_first_spec n s
: I n → P (@safe_first n s).
Proof.
unfold safe_first.
destruct s.
- simpl. destruct (decision_procedure (Q n)); eauto.
Qed.
End SafeFirst.
Fixpoint safe_first_ext X `{OrderedType X} (p:@inf_subset X H) P Q n
(PC:∀ n, Computable (P n))
(QC:∀ n, Computable (Q n))
(PS:safe p P n)
(QS:safe p Q n)
(EXT:(∀ x, P x ↔ Q x)) {struct QS}
: safe_first PC PS = safe_first QC QS.
Proof.
destruct PS. destruct QS. simpl. repeat cases. reflexivity.
- exfalso. eapply n0. rewrite <- EXT. eauto.
- exfalso. eapply n0. rewrite EXT. eauto.
- eapply safe_first_ext. eauto.
Qed.
Lemma safe_impl X `{OrderedType X} (p:@inf_subset X H) (P Q: X → Prop) n
: safe p P n → (∀ x, P x → Q x) → safe p Q n.
Proof.
intros. general induction H0; eauto.
econstructor; intros. eapply H1; eauto.
Qed.
Lemma safe_impl' X `{OrderedType X} (p:@inf_subset X H) (P Q: X → Prop) n
: safe p P n → (∀ x, _le n x → P x → Q x) → safe p Q n.
Proof.
intros. general induction H0; eauto.
econstructor; intros. eapply H1; eauto.
intros x. destr_sig. simpl in ×. dcr. intros.
eapply H2; eauto.
rewrite <- H5. eauto.
Qed.