Lvc.Spilling.RLiveMin
Require Import List Map Envs AllInRel Exp MoreList.
Require Import IL Annotation.
Require Import Liveness.Liveness.
Require Import ExpVarsBounded SpillSound SpillUtil.
Require Import PartialOrder.
Set Implicit Arguments.
Definition is_rlive_min k ZL Λ s sl Rlv
:= ∀ R M, spill_sound k ZL Λ (R,M) s sl
→ Rlv ⊆ R.
Inductive rlive_min (k:nat)
: list params → list (⦃var⦄ × ⦃var⦄) → ⦃var⦄ → stmt → spilling → ann ⦃var⦄ → Prop :=
| RMinLet ZL Λ x e s an sl Rlv rlv G
: rlive_min k ZL Λ (singleton x) s sl rlv
→ is_rlive_min k ZL Λ (stmtLet x e s) (ann1 an sl) (Rlv \ G)
→ rlive_min k ZL Λ G (stmtLet x e s) (ann1 an sl) (ann1 Rlv rlv)
| RMinIf ZL Λ e s1 s2 an sl1 sl2 Rlv rlv1 rlv2 G
: rlive_min k ZL Λ ∅ s1 sl1 rlv1
→ rlive_min k ZL Λ ∅ s2 sl2 rlv2
→ is_rlive_min k ZL Λ (stmtIf e s1 s2) (ann2 an sl1 sl2) (Rlv \ G)
→ rlive_min k ZL Λ G (stmtIf e s1 s2) (ann2 an sl1 sl2) (ann2 Rlv rlv1 rlv2)
| RMinReturn ZL Λ e an Rlv G
: is_rlive_min k ZL Λ (stmtReturn e) (ann0 an) (Rlv \ G)
→ rlive_min k ZL Λ G (stmtReturn e) (ann0 an) (ann0 Rlv)
| RMinApp ZL Λ f Y an Rlv G
: is_rlive_min k ZL Λ (stmtApp f Y) (ann0 an) (Rlv \ G)
→ rlive_min k ZL Λ G (stmtApp f Y) (ann0 an) (ann0 Rlv)
| RSpillFun ZL Λ G F t spl rms sl_F sl_t Rlv rlv_F rlv_t
: (∀ n Zs sl_s rlv_s rm,
get F n Zs
→ get sl_F n sl_s
→ get rlv_F n rlv_s
→ get rms n rm
→ rlive_min k (fst ⊝ F ++ ZL) (rms ++ Λ) (fst rm) (snd Zs) sl_s rlv_s)
→ rlive_min k (fst ⊝ F ++ ZL) (rms ++ Λ) ∅ t sl_t rlv_t
→ is_rlive_min k ZL Λ (stmtFun F t) (annF (spl, rms) sl_F sl_t) (Rlv \ G)
→ rlive_min k ZL Λ G (stmtFun F t) (annF (spl, rms) sl_F sl_t) (annF Rlv rlv_F rlv_t).
Lemma rlive_min_G_anti k ZL Λ G G' s sl rlv
: rlive_min k ZL Λ G s sl rlv
→ G ⊆ G'
→ rlive_min k ZL Λ G' s sl rlv.
Proof.
intros RLM Incl.
general induction RLM; econstructor; intros; eauto;
hnf; intros; rewrite <- Incl; eauto.
Qed.
Lemma rlive_min_getAnn k ZL Λ s sl rlv R M
: rlive_min k ZL Λ ∅ s sl rlv
→ spill_sound k ZL Λ (R,M) s sl
→ getAnn rlv ⊆ R.
Proof.
intros rliveMin spillSnd. general induction rliveMin; cbn; unfold is_rlive_min in H;
rewrite <-minus_empty; try eapply H; eauto.
Qed.
Lemma rlive_min_getAnn_G k ZL Λ G s sl rlv
: rlive_min k ZL Λ G s sl rlv
→ (∀ R M, spill_sound k ZL Λ (R,M) s sl → getAnn rlv ⊆ R)
→ rlive_min k ZL Λ ∅ s sl rlv.
Proof.
intros rliveMin isMin.
general induction rliveMin; econstructor; cbn in *; eauto;
unfold is_rlive_min; intros; rewrite minus_empty; eapply isMin; eauto.
Qed.
Lemma rlive_min_incl_R k ZL Λ s sl rlv R M G
: G ⊆ R
→ spill_sound k ZL Λ (R, M) s sl
→ rlive_min k ZL Λ G s sl rlv
→ getAnn rlv ⊆ R.
Proof.
intros Geq spillSnd rlive.
general induction rlive; cbn;
unfold is_rlive_min in *; rewrite <-union_subset_equal with (s':=R); eauto;
apply incl_minus_incl_union; [| | | |eapply H1;eauto]; eapply H; eauto.
Qed.
Lemma is_rlive_min_ext Λ Λ' k ZL s sl LV
: poEq Λ Λ'
→ is_rlive_min k ZL Λ s sl LV
→ is_rlive_min k ZL Λ' s sl LV.
Proof.
intros pir2 H. unfold is_rlive_min in ×.
intros. eapply spill_sound_ext in H0; eauto.
Qed.
Lemma rlive_min_ext Λ Λ' k ZL G s sl lv
: poEq Λ Λ'
→ rlive_min k ZL Λ G s sl lv
→ rlive_min k ZL Λ' G s sl lv.
Proof.
intros Λeq lvMin. general induction lvMin; unfold is_rlive_min;
econstructor; eauto using is_rlive_min_ext.
Qed.
Lemma is_rlive_min_monotone Λ Λ' k ZL s sl LV
: poLe Λ Λ'
→ is_rlive_min k ZL Λ s sl LV
→ is_rlive_min k ZL Λ' s sl LV.
Proof.
intros pir2 H. unfold is_rlive_min in ×.
intros. eapply spill_sound_monotone in H0; eauto.
Qed.
Lemma rlive_min_monotone Λ Λ' k ZL G s sl lv
: poLe Λ Λ'
→ rlive_min k ZL Λ G s sl lv
→ rlive_min k ZL Λ' G s sl lv.
Proof.
intros Λeq lvMin. general induction lvMin; unfold is_rlive_min;
econstructor; eauto using is_rlive_min_monotone.
Qed.
Require Import IL Annotation.
Require Import Liveness.Liveness.
Require Import ExpVarsBounded SpillSound SpillUtil.
Require Import PartialOrder.
Set Implicit Arguments.
Definition is_rlive_min k ZL Λ s sl Rlv
:= ∀ R M, spill_sound k ZL Λ (R,M) s sl
→ Rlv ⊆ R.
Inductive rlive_min (k:nat)
: list params → list (⦃var⦄ × ⦃var⦄) → ⦃var⦄ → stmt → spilling → ann ⦃var⦄ → Prop :=
| RMinLet ZL Λ x e s an sl Rlv rlv G
: rlive_min k ZL Λ (singleton x) s sl rlv
→ is_rlive_min k ZL Λ (stmtLet x e s) (ann1 an sl) (Rlv \ G)
→ rlive_min k ZL Λ G (stmtLet x e s) (ann1 an sl) (ann1 Rlv rlv)
| RMinIf ZL Λ e s1 s2 an sl1 sl2 Rlv rlv1 rlv2 G
: rlive_min k ZL Λ ∅ s1 sl1 rlv1
→ rlive_min k ZL Λ ∅ s2 sl2 rlv2
→ is_rlive_min k ZL Λ (stmtIf e s1 s2) (ann2 an sl1 sl2) (Rlv \ G)
→ rlive_min k ZL Λ G (stmtIf e s1 s2) (ann2 an sl1 sl2) (ann2 Rlv rlv1 rlv2)
| RMinReturn ZL Λ e an Rlv G
: is_rlive_min k ZL Λ (stmtReturn e) (ann0 an) (Rlv \ G)
→ rlive_min k ZL Λ G (stmtReturn e) (ann0 an) (ann0 Rlv)
| RMinApp ZL Λ f Y an Rlv G
: is_rlive_min k ZL Λ (stmtApp f Y) (ann0 an) (Rlv \ G)
→ rlive_min k ZL Λ G (stmtApp f Y) (ann0 an) (ann0 Rlv)
| RSpillFun ZL Λ G F t spl rms sl_F sl_t Rlv rlv_F rlv_t
: (∀ n Zs sl_s rlv_s rm,
get F n Zs
→ get sl_F n sl_s
→ get rlv_F n rlv_s
→ get rms n rm
→ rlive_min k (fst ⊝ F ++ ZL) (rms ++ Λ) (fst rm) (snd Zs) sl_s rlv_s)
→ rlive_min k (fst ⊝ F ++ ZL) (rms ++ Λ) ∅ t sl_t rlv_t
→ is_rlive_min k ZL Λ (stmtFun F t) (annF (spl, rms) sl_F sl_t) (Rlv \ G)
→ rlive_min k ZL Λ G (stmtFun F t) (annF (spl, rms) sl_F sl_t) (annF Rlv rlv_F rlv_t).
Lemma rlive_min_G_anti k ZL Λ G G' s sl rlv
: rlive_min k ZL Λ G s sl rlv
→ G ⊆ G'
→ rlive_min k ZL Λ G' s sl rlv.
Proof.
intros RLM Incl.
general induction RLM; econstructor; intros; eauto;
hnf; intros; rewrite <- Incl; eauto.
Qed.
Lemma rlive_min_getAnn k ZL Λ s sl rlv R M
: rlive_min k ZL Λ ∅ s sl rlv
→ spill_sound k ZL Λ (R,M) s sl
→ getAnn rlv ⊆ R.
Proof.
intros rliveMin spillSnd. general induction rliveMin; cbn; unfold is_rlive_min in H;
rewrite <-minus_empty; try eapply H; eauto.
Qed.
Lemma rlive_min_getAnn_G k ZL Λ G s sl rlv
: rlive_min k ZL Λ G s sl rlv
→ (∀ R M, spill_sound k ZL Λ (R,M) s sl → getAnn rlv ⊆ R)
→ rlive_min k ZL Λ ∅ s sl rlv.
Proof.
intros rliveMin isMin.
general induction rliveMin; econstructor; cbn in *; eauto;
unfold is_rlive_min; intros; rewrite minus_empty; eapply isMin; eauto.
Qed.
Lemma rlive_min_incl_R k ZL Λ s sl rlv R M G
: G ⊆ R
→ spill_sound k ZL Λ (R, M) s sl
→ rlive_min k ZL Λ G s sl rlv
→ getAnn rlv ⊆ R.
Proof.
intros Geq spillSnd rlive.
general induction rlive; cbn;
unfold is_rlive_min in *; rewrite <-union_subset_equal with (s':=R); eauto;
apply incl_minus_incl_union; [| | | |eapply H1;eauto]; eapply H; eauto.
Qed.
Lemma is_rlive_min_ext Λ Λ' k ZL s sl LV
: poEq Λ Λ'
→ is_rlive_min k ZL Λ s sl LV
→ is_rlive_min k ZL Λ' s sl LV.
Proof.
intros pir2 H. unfold is_rlive_min in ×.
intros. eapply spill_sound_ext in H0; eauto.
Qed.
Lemma rlive_min_ext Λ Λ' k ZL G s sl lv
: poEq Λ Λ'
→ rlive_min k ZL Λ G s sl lv
→ rlive_min k ZL Λ' G s sl lv.
Proof.
intros Λeq lvMin. general induction lvMin; unfold is_rlive_min;
econstructor; eauto using is_rlive_min_ext.
Qed.
Lemma is_rlive_min_monotone Λ Λ' k ZL s sl LV
: poLe Λ Λ'
→ is_rlive_min k ZL Λ s sl LV
→ is_rlive_min k ZL Λ' s sl LV.
Proof.
intros pir2 H. unfold is_rlive_min in ×.
intros. eapply spill_sound_monotone in H0; eauto.
Qed.
Lemma rlive_min_monotone Λ Λ' k ZL G s sl lv
: poLe Λ Λ'
→ rlive_min k ZL Λ G s sl lv
→ rlive_min k ZL Λ' G s sl lv.
Proof.
intros Λeq lvMin. general induction lvMin; unfold is_rlive_min;
econstructor; eauto using is_rlive_min_monotone.
Qed.