Lvc.Equiv.SimI
Require Import List paco2.
Require Export Util Var Val Exp Envs Map CSet AutoIndTac IL AllInRel.
Require Export Sim SimTactics IL BlockType.
Set Implicit Arguments.
Unset Printing Records.
Require Export Util Var Val Exp Envs Map CSet AutoIndTac IL AllInRel.
Require Export Sim SimTactics IL BlockType.
Set Implicit Arguments.
Unset Printing Records.
(* A proof relation is parameterized by analysis information A *)
Class ProofRelationI (A:Type) := {
(* Relates parameter lists according to analysis information *)
ParamRelI : A → list var → list var → Prop;
(* Relates argument lists according to analysis information
and closure environments *)
ArgRelI : onv val → onv val → A→ list val → list val → Prop;
(* Relates environments according to analysis information *)
IndexRelI : 〔A〕 → nat → nat → Prop;
Image : 〔A〕 → nat;
IndexRelDrop : ∀ AL' AL n n', IndexRelI (AL' ++ AL) n n' →
n ≥ length AL'
→ IndexRelI AL (n - length AL') (n' - Image AL')
}.
Definition irel := rel3 simtype (fun _ : simtype ⇒ I.state)
(fun (_ : simtype) (_ : I.state) ⇒ I.state).
Class ProofRelationI (A:Type) := {
(* Relates parameter lists according to analysis information *)
ParamRelI : A → list var → list var → Prop;
(* Relates argument lists according to analysis information
and closure environments *)
ArgRelI : onv val → onv val → A→ list val → list val → Prop;
(* Relates environments according to analysis information *)
IndexRelI : 〔A〕 → nat → nat → Prop;
Image : 〔A〕 → nat;
IndexRelDrop : ∀ AL' AL n n', IndexRelI (AL' ++ AL) n n' →
n ≥ length AL'
→ IndexRelI AL (n - length AL') (n' - Image AL')
}.
Definition irel := rel3 simtype (fun _ : simtype ⇒ I.state)
(fun (_ : simtype) (_ : I.state) ⇒ I.state).
Definition paramrel A (PR:ProofRelationI A) AL L L' :=
∀ (f f':lab) Z s i Z' s' i' a,
IndexRelI AL f f'
→ get AL f a
→ get L f (I.blockI Z s i)
→ get L' f' (I.blockI Z' s' i')
→ ParamRelI a Z Z'.
Definition indexwise_paramrel A (PR:ProofRelationI A) (F F':〔params × stmt〕) AL' AL :=
∀ n n' Z s Z' s' a,
IndexRelI (AL' ++ AL) n n'
→ get F n (Z,s)
→ get F' n' (Z',s')
→ get AL' n a
→ ParamRelI a Z Z'.
Definition separates A (PR:ProofRelationI A) AL' AL (F F':〔params × stmt〕) :=
length AL' = length F
∧ Image AL' = length F'
∧ (∀ n n', IndexRelI (AL' ++ AL) n n' → n < length F → n' < length F')
∧ (∀ n n', IndexRelI (AL' ++ AL) n n' → n ≥ length F → n' ≥ length F').
Lemma complete_paramrel A (PR:ProofRelationI A) F F' AL' AL L L'
: indexwise_paramrel PR F F' AL' AL
→ paramrel PR AL L L'
→ separates PR AL' AL F F'
→ paramrel PR (AL' ++ AL) (mapi I.mkBlock F ++ L) (mapi I.mkBlock F' ++ L').
Proof.
intros IPR PAR [Len1 [Img [Ilt Ige]]].
hnf; intros ? ? ? ? ? ? ? ? ? RN GetAL GetFL GetL'.
eapply get_app_cases in GetFL; destruct GetFL as [GetFL'| [GetFL GE]].
- exploit Ilt; eauto. eapply get_range in GetFL'.
rewrite mapi_length in GetFL'; eauto.
eapply get_app_lt_1 in GetL'; [| rewrite mapi_length; eauto ].
inv_get. destruct x0 as [Z s], x as [Z' s']. simpl in ×. clear EQ0 EQ.
eauto.
- rewrite mapi_length in *; eauto.
exploit Ige; eauto.
eapply get_app_right_ge in GetAL; [ | rewrite Len1; eauto ].
eapply get_app_right_ge in GetL'; [ | rewrite mapi_length; eauto ].
eapply IndexRelDrop in RN; [| rewrite Len1; rewrite mapi_length in *; eauto].
exploit (PAR (LabI (f - ❬AL'❭)) (LabI (f' - Image AL'))); eauto.
rewrite Len1; eauto. rewrite Img; rewrite mapi_length in *; eauto.
Qed.
Definition indexes_exists {A} (PR:ProofRelationI A) AL (L L' : I.labenv) :=
∀ n n' a b, IndexRelI AL n n' → get AL n a → get L n b → ∃ b', get L' n' b'.
Lemma complete_indexes_exists A (PR:ProofRelationI A) F F' AL' AL L L'
: indexes_exists PR AL L L'
→ separates PR AL' AL F F'
→ indexes_exists PR (AL' ++ AL) (mapi I.mkBlock F ++ L) (mapi I.mkBlock F' ++ L').
Proof.
intros IE [Len1 [Img [Ilt Ige]]].
hnf; intros ? ? ? ? RN GetAL GetF.
assert (Len3:❬AL'❭ = ❬mapi I.mkBlock F❭) by eauto with len.
eapply get_app_cases in GetF. destruct GetF as [GetF| [GetFL GE]].
+ inv_get. exploit Ilt; eauto using get_range.
edestruct get_in_range; eauto.
eexists; eapply get_app, get_mapi; eauto.
+ eapply get_app_right_ge in GetAL; [ | rewrite Len3; eauto ].
exploit Ige; eauto. rewrite mapi_length in *; eauto.
eapply IndexRelDrop in RN; [| rewrite Len3; eauto].
edestruct IE; eauto. rewrite Len3. eauto.
rewrite Img in H0. eexists.
eapply get_app_right; eauto. rewrite mapi_length in ×. omega.
Qed.
Definition app_r t (r:irel) A (PR:ProofRelationI A) AL (L L':I.labenv) :=
∀ (f f':lab) a Z s i Z' s' i',
IndexRelI AL f f'
→ get AL f a
→ get L f (I.blockI Z s i)
→ get L' f' (I.blockI Z' s' i')
→ ∀ E E' Yv Y'v Y Y',
ArgRelI E E' a Yv Y'v
→ omap (op_eval E) Y = Some Yv
→ omap (op_eval E') Y' = Some Y'v
→ ❬Z❭ = ❬Yv❭
→ ❬Z'❭ = ❬Y'v❭
→ r t (L, E, stmtApp f Y)
(L', E', stmtApp f' Y').
Lemma app_r_mon t (r r':irel) A (PR:ProofRelationI A) AL L L'
: app_r t r PR AL L L'
→ (∀ t x y, r t x y → r' t x y)
→ app_r t r' PR AL L L'.
Proof.
intros Lr LE; hnf; intros; eauto.
Qed.
Definition labenv_sim t (r:irel)
{A} (PR:ProofRelationI A) (AL:list A) L L' :=
length AL = length L ∧
smaller L' ∧
smaller L ∧
paramrel PR AL L L' ∧
indexes_exists PR AL L L' ∧
app_r t r PR AL L L'.
Lemma labenv_sim_nil t r A PR
: @labenv_sim t r A PR nil nil nil.
Proof.
do 5 (try split); hnf; intros; isabsurd.
Qed.
Hint Immediate labenv_sim_nil.
Lemma labenv_sim_mon t (r r':irel) A (PR:ProofRelationI A) AL L L'
: labenv_sim t r PR AL L L'
→ (∀ t x y, r t x y → r' t x y)
→ labenv_sim t r' PR AL L L'.
Proof.
intros [LEN [STL [STL' [PAR [IE SIM]]]]] LE; hnf; do 5 (try split); eauto.
eapply app_r_mon; eauto.
Qed.
Definition indexwise_r t (r:irel) A (PR:ProofRelationI A) AL' F F' AL L L' :=
∀ n n' Z s Z' s' a,
IndexRelI (AL' ++ AL) n n'
→ get F n (Z,s)
→ get F' n' (Z',s')
→ get AL' n a
→ ∀ E E' VL VL',
ArgRelI E E' a VL VL'
→ r t (L, E[Z <-- List.map Some VL], s)
(L', E'[Z' <-- List.map Some VL'], s').
Lemma indexwise_r_mon t (r r':irel) A (PR:ProofRelationI A) AL' F F' AL L L'
: indexwise_r t r PR AL' F F' AL L L'
→ (∀ t x y, r t x y → r' t x y)
→ indexwise_r t r' PR AL' F F' AL L L'.
Proof.
intros Idx LE; hnf; intros; eauto.
Qed.
Hint Unfold separates.
Lemma labenv_sim_extension_cases t r A (PR:ProofRelationI A) (AL AL':list A) F F' L L'
: indexwise_r t (sim r \3/ r) PR AL' F F' AL (mapi I.mkBlock F ++ L) (mapi I.mkBlock F' ++ L')
→ indexwise_paramrel PR F F' AL' AL
→ separates PR AL' AL F F'
→ labenv_sim t (sim r) PR AL L L'
→ labenv_sim t (sim r) PR (AL' ++ AL) (mapi I.mkBlock F ++ L) (mapi I.mkBlock F' ++ L').
Proof.
intros SIM IPR [Len2 [Img [Ilt Ige]]] [Len1 [STL [STL' [PAR [IE LSIM]]]]].
hnf; do 5 (try split);
eauto 20 using smaller_I_mkBlocks, complete_paramrel, complete_indexes_exists with len.
intros f f' ? ? ? ? ? ? ? RN GetAL GetFL GetL'.
assert (Len3:❬AL'❭ = ❬mapi I.mkBlock F❭) by eauto with len.
eapply get_app_cases in GetFL. destruct GetFL as [GetFL'| [GetFL GE]].
- exploit Ilt; eauto. eapply get_range in GetFL'.
rewrite mapi_length in GetFL'; eauto.
eapply get_app_lt_1 in GetL'; [| rewrite mapi_length; eauto ].
inv_get. destruct x0 as [Z s], x as [Z' s']. simpl in ×. clear EQ0 EQ.
pone_step. simpl.
orewrite (f-f=0). orewrite (f'-f'=0). simpl.
exploit SIM; eauto.
- intros. exploit Ige; eauto. rewrite mapi_length in GE; eauto.
eapply get_app_right_ge in GetAL; [ | rewrite Len3; eauto ].
eapply get_app_right_ge in GetL'; [ | rewrite mapi_length; eauto ].
rewrite mapi_length in ×.
eapply IndexRelDrop in RN; eauto; [| rewrite Len3; eauto].
exploit (LSIM (LabI (f - ❬AL'❭)) (LabI (f' - Image AL'))) as SIMR; eauto.
rewrite Len3; eauto. rewrite Img; eauto.
assert (EQf:f=LabI (❬mapi I.mkBlock F❭+(f-❬mapi I.mkBlock F❭))). {
len_simpl. destruct f; f_equal. simpl in ×. omega.
}
assert (EQf':f'=LabI (❬mapi I.mkBlock F'❭+(f'-❬mapi I.mkBlock F'❭))). {
len_simpl. destruct f'; f_equal. simpl in ×. omega.
}
rewrite EQf, EQf'.
eapply sim_app_shift_I; eauto. len_simpl.
rewrite Img, Len3 in ×. eauto.
Qed.
Lemma fix_compatible_separate t A (PR:ProofRelationI A) AL' AL F F'
: (∀ r L L',
labenv_sim t (sim r) PR (AL' ++ AL) (mapi I.mkBlock F ++ L) (mapi I.mkBlock F' ++ L')
→ indexwise_r t (sim r) PR AL' F F' AL (mapi I.mkBlock F ++ L) (mapi I.mkBlock F' ++ L'))
→ indexwise_paramrel PR F F' AL' AL
→ separates PR AL' AL F F'
→ ∀ r L L', labenv_sim t (sim r) PR AL L L'
→ indexwise_r t (sim r) PR AL' F F' AL (mapi I.mkBlock F ++ L) (mapi I.mkBlock F' ++ L').
Proof.
intros ISIM LP SEP r L L' SIML. pcofix CIH.
eapply ISIM.
eapply labenv_sim_extension_cases; eauto.
eauto using indexwise_r_mon; eauto.
eapply labenv_sim_mon; eauto.
Qed.
Lemma labenv_sim_extension t A (PR:ProofRelationI A) (AL AL':list A) F F'
: (∀ r L L',
labenv_sim t (sim r) PR (AL' ++ AL) (mapi I.mkBlock F ++ L) (mapi I.mkBlock F' ++ L')
→ indexwise_r t (sim r) PR AL' F F' AL (mapi I.mkBlock F ++ L) (mapi I.mkBlock F' ++ L'))
→ indexwise_paramrel PR F F' AL' AL
→ separates PR AL' AL F F'
→ ∀ r L L', labenv_sim t (sim r) PR AL L L'
→ labenv_sim t (sim r) PR (AL' ++ AL) (mapi I.mkBlock F ++ L) (mapi I.mkBlock F' ++ L').
Proof.
intros ISIM IP SEP r L L' SIML.
eapply labenv_sim_extension_cases; eauto.
eapply indexwise_r_mon.
eapply fix_compatible_separate; eauto. eauto.
Qed.
Lemma sim_fun t A (PR:ProofRelationI A) (AL AL':list A) F F' V V' s s'
: (∀ r L L', labenv_sim t (sim r) PR (AL' ++ AL) (mapi I.mkBlock F ++ L) (mapi I.mkBlock F' ++ L')
→ (sim r \3/ r) t (mapi I.mkBlock F ++ L, V, s) (mapi I.mkBlock F' ++ L', V', s'))
→ (∀ r L L',
labenv_sim t (sim r) PR (AL' ++ AL) (mapi I.mkBlock F ++ L) (mapi I.mkBlock F' ++ L')
→ indexwise_r t (sim r) PR AL' F F' AL (mapi I.mkBlock F ++ L) (mapi I.mkBlock F' ++ L'))
→ indexwise_paramrel PR F F' AL' AL
→ separates PR AL' AL F F'
→ ∀ r L L', labenv_sim t (sim r) PR AL L L'
→ sim r t (L, V, stmtFun F s) (L', V', stmtFun F' s').
Proof.
intros SIM_s ISIM IP SEP r L L' SIML.
pone_step.
eapply SIM_s.
eapply labenv_sim_extension; eauto.
Qed.
(* A proof relation is parameterized by analysis information A *)
Class PointwiseProofRelationI (A:Type) := {
(* Relates parameter lists according to analysis information *)
ParamRelIP : A → list var → list var → Prop;
(* Relates argument lists according to analysis information
and closure environments *)
ArgRelIP : onv val → onv val → A→ list val → list val → Prop;
(* Relates environments according to analysis information *)
}.
Lemma pointwise_PR_as_PR A
: PointwiseProofRelationI A → ProofRelationI A.
Proof.
intros. destruct X as [B C].
eapply (Build_ProofRelationI B C (fun L n n' ⇒ eq n n') (@length _)).
- intros; dcr; subst; eauto.
Defined.
Arguments pointwise_PR_as_PR : simpl never.
Hint Resolve pointwise_PR_as_PR : typeclass_instances.
Coercion pointwise_PR_as_PR : PointwiseProofRelationI >-> ProofRelationI.
Lemma IndexRelIP_eq A PR L n n'
: @IndexRelI A (pointwise_PR_as_PR PR) L n n' ↔ n = n'.
Proof.
destruct PR; simpl. reflexivity.
Qed.
Lemma IndexRelIP_refl A PR L n
: @IndexRelI A (pointwise_PR_as_PR PR) L n n.
Proof.
destruct PR; simpl. reflexivity.
Qed.
Hint Resolve IndexRelIP_refl.
Lemma labenv_sim_extension_ptw t A (PR:PointwiseProofRelationI A) (AL AL':list A) F F'
: (∀ r L L',
labenv_sim t (sim r) PR (AL' ++ AL) (mapi I.mkBlock F ++ L) (mapi I.mkBlock F' ++ L')
→ indexwise_r t (sim r) PR AL' F F' AL (mapi I.mkBlock F ++ L) (mapi I.mkBlock F' ++ L'))
→ indexwise_paramrel PR F F' AL' AL
→ length AL' = length F
→ length F = length F'
→ ∀ r L L', labenv_sim t (sim r) PR AL L L'
→ labenv_sim t (sim r) PR (AL' ++ AL) (mapi I.mkBlock F ++ L) (mapi I.mkBlock F' ++ L').
Proof.
intros ISIM IP Len1 Len2 r L L' SIML.
assert (separates PR AL' AL F F'). {
destruct SIML; dcr.
hnf; destruct PR; simpl; repeat split; intros; omega.
}
eapply labenv_sim_extension_cases; eauto.
eapply indexwise_r_mon.
eapply fix_compatible_separate; eauto. eauto.
Qed.
Lemma sim_fun_ptw t A (PR:PointwiseProofRelationI A) (AL AL':list A) F F' V V' s s'
: (∀ r L L', labenv_sim t (sim r) PR (AL' ++ AL) (mapi I.mkBlock F ++ L) (mapi I.mkBlock F' ++ L')
→ (sim r \3/ r) t (mapi I.mkBlock F ++ L, V, s) (mapi I.mkBlock F' ++ L', V', s'))
→ (∀ r L L',
labenv_sim t (sim r) PR (AL' ++ AL) (mapi I.mkBlock F ++ L) (mapi I.mkBlock F' ++ L')
→ indexwise_r t (sim r) PR AL' F F' AL (mapi I.mkBlock F ++ L) (mapi I.mkBlock F' ++ L'))
→ indexwise_paramrel PR F F' AL' AL
→ length AL' = length F
→ length F = length F'
→ ∀ r L L', labenv_sim t (sim r) PR AL L L'
→ sim r t (L, V, stmtFun F s) (L', V', stmtFun F' s').
Proof.
intros SIM_s ISIM IP Len1 Len2 r L L' SIML.
pone_step.
eapply SIM_s.
eapply labenv_sim_extension_ptw; eauto.
Qed.
Lemma labenv_sim_app i A (PR:ProofRelationI A) AL L L' r V V' Y Y' (f f':lab) a
: labenv_sim i (sim r) PR AL L L'
→ get AL f a
→ IndexRelI AL f f'
→ (∀ Z s n Z' s' n',
get L f (I.blockI Z s n)
→ get L' f' (I.blockI Z' s' n')
→ ParamRelI a Z Z'
→ (∀ Yv, omap (op_eval V) Y = ⎣ Yv ⎦ → ❬Z❭ = ❬Yv❭
→ ∃ Y'v, omap (op_eval V') Y' = ⎣ Y'v ⎦ ∧
❬Z'❭ = ❬Y'v❭ ∧ ArgRelI V V' a Yv Y'v)
∧ (if isBisim i then
(omap (op_eval V) Y = None → omap (op_eval V') Y' = None)
∧ (❬Z❭ ≠ ❬Y❭ → ❬Z'❭ ≠ ❬Y'❭)
else True))
→ sim r i (L, V, stmtApp f Y) (L', V', stmtApp f' Y').
Proof.
intros LSIM GetAL RN ALL.
edestruct LSIM as [Len1 [STL [STL' [PAR [IE SIM]]]]]; eauto; dcr.
inv_get. edestruct IE; eauto.
destruct x as [Z s n], x0 as [Z' s' n'].
exploit PAR; eauto.
edestruct ALL as [A1 A2]; eauto; dcr.
case_eq (omap (op_eval V) Y); intros.
- decide (❬Z❭ = ❬Y❭).
+ edestruct A1; dcr; eauto with len.
+ destruct i; simpl in *; dcr.
× exploit H4; eauto.
pno_step.
× perr.
× perr.
- destruct i; simpl in *; dcr.
+ exploit H3; eauto. pno_step.
+ perr.
+ perr.
Qed.
Definition bodies_r t (r:irel) A (PR:ProofRelationI A) AL (L1 L2 L L':I.labenv) :=
∀ f f' Z s i Z' s' i' a,
IndexRelI AL f f'
→ get L f (I.blockI Z s i)
→ get L' f' (I.blockI Z' s' i')
→ get AL f a
→ ∀ E E' VL VL',
ArgRelI E E' a VL VL'
→ r t (drop (f - i) L1, E[Z <-- List.map Some VL], s)
(drop (f' - i') L2, E'[Z' <-- List.map Some VL'], s').
Lemma bodies_r_mon t (r r':irel) A (PR:ProofRelationI A) AL L1 L2 L L'
: bodies_r t r PR AL L1 L2 L L'
→ (∀ t x y, r t x y → r' t x y)
→ bodies_r t r' PR AL L1 L2 L L'.
Proof.
intros Idx LE; hnf; intros; eauto.
Qed.
Lemma bodies_r_app_r t A (PR:ProofRelationI A) AL L L' r
: bodies_r t r PR AL L L' L L'
→ app_r t (sim r) PR AL L L'.
Proof.
intros SIM.
hnf; intros.
pone_step; simpl; eauto with len.
Qed.
Lemma fix_compatible_bodies t A (PR:ProofRelationI A) AL L L'
: (∀ (r:irel) L1 L2, app_r t (sim r) PR AL L1 L2
→ bodies_r t (sim r) PR AL L1 L2 L L')
→ ∀ r, bodies_r t (sim r) PR AL L L' L L'.
Proof.
intros ISIM r.
pcofix CIH;
change (bodies_r t (sim r) PR AL L L' L L');
change (bodies_r t r PR AL L L' L L') in CIH.
eapply ISIM.
eapply bodies_r_app_r; eauto.
Qed.
Lemma stmtApp_sim_tl S `{StateType S} (σ:S) r L E cont C
: sim r Bisim σ (L, E, stmtApp (LabI cont) nil)
→ smaller L
→ sim r Bisim σ (C :: L, E, stmtApp (LabI (1 + cont)) nil).
Proof.
intros.
destruct (get_dec L cont) as [[? ?]|].
- decide (length (block_Z x) = 0).
+ eapply sim_Y_right; eauto; swap 1 2.
× econstructor; eauto using get. reflexivity.
× exploit H1; eauto. change (LabI (1 + cont):nat) with (1 + cont).
simpl in H2.
orewrite (1 + cont - I.block_n x = 1 + (cont - I.block_n x)).
simpl. econstructor; eauto. reflexivity. reflexivity.
+ eapply (sim_stuck_exchange _ H0); eauto.
× stuck. inv H2. simpl in ×. inv def. simpl in ×. inv_get. congruence.
× stuck. inv H2. simpl in ×. inv def. simpl in ×. repeat inv_get. congruence.
- eapply (sim_stuck_exchange _ H0); eauto.
× stuck. inv H2. simpl in ×. inv def. simpl in ×. inv_get.
× stuck. inv H2. simpl in ×. inv def. simpl in ×. inv_get.
Qed.