Lvc.Equiv.TraceEquiv
Require Import List.
Require Import Util Var Val Exp Envs Map CSet AutoIndTac IL AllInRel.
Require Import SmallStepRelations StateType NonParametricBiSim.
Require Import Divergence StateTypeProperties.
Set Implicit Arguments.
Unset Printing Records.
Require Import Util Var Val Exp Envs Map CSet AutoIndTac IL AllInRel.
Require Import SmallStepRelations StateType NonParametricBiSim.
Require Import Divergence StateTypeProperties.
Set Implicit Arguments.
Unset Printing Records.
Inductive prefix {S} `{StateType S} : S → list extevent → Prop :=
| producesPrefixSilent (σ:S) (σ':S) L :
step σ EvtTau σ'
→ prefix σ' L
→ prefix σ L
| producesPrefixExtern (σ:S) (σ':S) evt L :
activated σ
→ step σ evt σ'
→ prefix σ' L
→ prefix σ (EEvtExtern evt::L)
| producesPrefixTerm (σ:S) (σ':S) r
: result σ' = r
→ star2 step σ nil σ'
→ normal2 step σ'
→ prefix σ (EEvtTerminate r::nil)
| producesPrefixPrefix (σ:S)
: prefix σ nil.
Definition prefix_eq {S} `{StateType S} {S'} `{StateType S'} (σ:S) (σ':S') :=
∀ L, prefix σ L ↔ prefix σ' L.
(* Only prove it of one StateType *)
Instance prefix_eq_Equivalence {S} `{StateType S}
: Equivalence prefix_eq.
Proof.
econstructor.
- hnf. intros; hnf. split; eauto.
- split; intros.
+ eapply H0; eauto.
+ eapply H0; eauto.
- unfold Transitive, prefix_eq; firstorder.
Qed.
***Closedness under silent reduction/expansion
Lemma prefix_star2_silent {S} `{StateType S} (σ σ':S) L
: star2 step σ nil σ' →
prefix σ' L → prefix σ L.
Proof.
intros. general induction H0; eauto.
- destruct yl, y; simpl in *; try congruence.
econstructor 1; eauto.
Qed.
Lemma prefix_star2_silent' {S} `{StateType S} (σ σ':S) L
: star2 step σ nil σ' →
prefix σ L → prefix σ' L.
Proof.
intros. general induction H0; eauto.
- destruct yl, y; simpl in *; try congruence.
eapply IHstar2; eauto.
inv H2.
+ relsimpl; eauto.
+ relsimpl.
+ exploit star2_reach_silent_step; eauto. eapply H.
destruct H3; subst. exfalso. eapply H5; firstorder.
econstructor 3; eauto.
+ econstructor 4.
Qed.
Lemma bisim_prefix' {S} `{StateType S} {S'} `{StateType S'} (sigma:S) (σ':S')
: bisim sigma σ' → ∀ L, prefix sigma L → prefix σ' L.
Proof.
intros. general induction H2.
- eapply IHprefix; eauto.
eapply bisim_reduction_closed; eauto.
eapply (star2_step _ _ H0). eapply star2_refl.
- eapply bisim_activated in H4; eauto.
destruct H4 as [? [? [? []]]].
destruct evt.
+ eapply prefix_star2_silent; eauto.
edestruct H6; eauto. destruct H8.
econstructor 2. eauto. eapply H8.
eapply IHprefix; eauto.
+ exfalso; eapply (no_activated_tau_step _ H0 H1); eauto.
- eapply bisim_terminate in H4; eauto.
destruct H4 as [? [? []]]. econstructor 3; [ | eauto | eauto]. congruence.
- econstructor 4.
Qed.
Lemma bisim_prefix {S} `{StateType S} {S'} `{StateType S'} (sigma:S) (σ':S')
: bisim sigma σ' → ∀ L, prefix sigma L ↔ prefix σ' L.
Proof.
split; eapply bisim_prefix'; eauto.
eapply NonParametricBiSim.bisim_sym; eauto.
Qed.
Lemma produces_only_nil_diverges S `{StateType S} (σ:S)
: (∀ L, prefix σ L → L = nil) → diverges σ.
Proof.
revert σ. cofix f; intros.
destruct (@step_dec _ H σ).
- destruct H1; dcr. destruct x.
+ exfalso. exploit H0. econstructor 2; try eapply H2.
eexists; eauto.
econstructor 4. congruence.
+ econstructor. eauto. eapply f.
intros. eapply H0.
eapply prefix_star2_silent.
eapply star2_silent; eauto. econstructor. eauto.
- exfalso.
exploit H0. econstructor 3. reflexivity. econstructor. eauto. congruence.
Qed.
Lemma prefix_extevent S `{StateType S} (σ:S) evt L
: prefix σ (EEvtExtern evt::L)
→ ∃ σ', star2 step σ nil σ'
∧ activated σ'
∧ ∃ σ'', step σ' evt σ'' ∧ prefix σ'' L.
Proof.
intros. general induction H0.
- edestruct IHprefix. reflexivity. dcr.
eexists x; split; eauto using star2_silent.
- eexists σ; eauto using star2.
Qed.
Lemma prefix_terminates S `{StateType S} (σ:S) r L
: prefix σ (EEvtTerminate r::L)
→ ∃ σ', star2 step σ nil σ' ∧ normal2 step σ' ∧ result σ' = r ∧ L = nil.
Proof.
intros. general induction H0.
- edestruct IHprefix. reflexivity.
eexists x; dcr; subst. eauto using star2_silent.
- eexists; intuition; eauto.
Qed.
Lemma prefix_terminates_incl S `{StateType S} S' `{StateType S'} (σ σ1:S) (σ':S') r
: star2 step σ nil σ1
→ normal2 step σ1
→ result σ1 = r
→ (∀ L, prefix σ L → prefix σ' L)
→ ∃ σ2, star2 step σ' nil σ2 ∧ normal2 step σ2 ∧ result σ2 = r.
Proof.
intros.
edestruct prefix_terminates.
- eapply H4. econstructor 3; eauto.
- dcr; eauto.
Qed.
Lemma diverges_produces_only_nil S `{StateType S} S' `{StateType S'} (σ:S)
: diverges σ → (∀ L, prefix σ L → L = nil).
Proof.
intros. general induction L; eauto.
destruct a.
- eapply prefix_extevent in H2; dcr.
exfalso. eapply diverges_never_activated; eauto.
eapply diverges_reduction_closed; eauto.
- eapply prefix_terminates in H2; dcr; subst.
exfalso. eapply diverges_never_terminates; eauto using diverges_reduction_closed.
Qed.
Lemma diverges_iff_nil S `{StateType S} S' `{StateType S'} (σ:S)
: diverges σ ↔ (∀ L, prefix σ L → L = nil).
Proof.
split.
- eapply diverges_produces_only_nil; eauto.
- eapply produces_only_nil_diverges; eauto.
Qed.
Lemma produces_diverges S `{StateType S} S' `{StateType S'} (σ:S) (σ':S')
: (∀ L, prefix σ' L → prefix σ L)
→ diverges σ → diverges σ'.
Proof.
intros.
pose proof (diverges_produces_only_nil H2).
eapply produces_only_nil_diverges.
intros. eapply H3. eauto.
Qed.
Lemma prefix_star_activated S `{StateType S} (σ1 σ1' σ1'':S) evt L
: star2 step σ1 nil σ1'
→ activated σ1'
→ step σ1' evt σ1''
→ prefix σ1'' L
→ prefix σ1 (EEvtExtern evt::L).
Proof.
intros. general induction H0.
- econstructor 2; eauto.
- relsimpl.
econstructor; eauto.
Qed.
Lemma prefix_preserved' S `{StateType S} S' `{StateType S'} (σ1 σ1' σ1'':S) (σ2 σ2' σ2'':S') evt
: (∀ L : list extevent, prefix σ1 L → prefix σ2 L)
→ star2 step σ1 nil σ1'
→ activated σ1'
→ step σ1' evt σ1''
→ star2 step σ2 nil σ2'
→ activated σ2'
→ step σ2' evt σ2''
→ ∀ L, prefix σ1'' L → prefix σ2'' L.
Proof.
intros.
- exploit (prefix_star_activated _ H2 H3 H4 H8).
eapply H1 in H9.
eapply prefix_extevent in H9. dcr.
exploit both_activated. eapply H11. eapply H5. eauto. eauto. subst.
assert (x0 = σ2''). eapply step_externally_determined; eauto. subst; eauto.
Qed.
Lemma prefix_preserved S `{StateType S} S' `{StateType S'} (σ1 σ1' σ1'':S) (σ2 σ2' σ2'':S') evt
:
(∀ L : list extevent, prefix σ1 L ↔ prefix σ2 L)
→ star2 step σ1 nil σ1'
→ activated σ1'
→ step σ1' evt σ1''
→ star2 step σ2 nil σ2'
→ activated σ2'
→ step σ2' evt σ2''
→ ∀ L, prefix σ1'' L ↔ prefix σ2'' L.
Proof.
split.
- eapply prefix_preserved'; try eassumption. firstorder.
- eapply prefix_preserved'; try eassumption. firstorder.
Qed.
Lemma produces_silent_closed {S} `{StateType S} S' `{StateType S'} (σ1 σ1':S) (σ2 σ2':S')
: star2 step σ1 nil σ1'
→ star2 step σ2 nil σ2'
→ (∀ L, prefix σ1 L ↔ prefix σ2 L)
→ (∀ L, prefix σ1' L ↔ prefix σ2' L).
Proof.
split; intros.
- eapply prefix_star2_silent'; eauto. eapply H3.
eapply prefix_star2_silent; eauto.
- eapply prefix_star2_silent'; eauto. eapply H3.
eapply prefix_star2_silent; eauto.
Qed.
Lemma prefix_bisim S `{StateType S} S' `{StateType S'} (σ:S) (σ':S')
: (∀ L, prefix σ L ↔ prefix σ' L)
→ bisim σ σ'.
Proof.
revert σ σ'.
cofix f; intros.
destruct (three_possibilities σ) as [A|[A|A]].
- dcr.
assert (prefix σ (EEvtTerminate (result x)::nil)). {
econstructor 3; eauto.
}
eapply H1 in H2.
eapply prefix_terminates in H2. dcr.
econstructor 3; eauto.
- dcr. inv H4; dcr.
assert (prefix x1 nil) by econstructor 4.
exploit (prefix_star_activated _ H3 H4 H5 H2).
eapply H1 in H6.
eapply prefix_extevent in H6. dcr.
econstructor 2; eauto.
+ intros.
assert (B:prefix x (EEvtExtern evt::nil)) by
(econstructor 2; eauto; econstructor 4).
pose proof H1.
eapply produces_silent_closed in H9; eauto.
eapply H9 in B.
inv B.
× exfalso. exploit (step_internally_deterministic _ _ _ _ H12 H10 ); eauto. dcr; congruence.
× eexists; split. eauto. eapply f.
eapply prefix_preserved; eauto.
+ intros.
assert (B:prefix x2 (EEvtExtern evt::nil)) by
(econstructor 2; eauto; econstructor 4).
pose proof H1.
eapply produces_silent_closed in H9; eauto.
eapply H9 in B.
inv B.
× exfalso. exploit (step_internally_deterministic _ _ _ _ H12 H5 ); eauto. dcr; congruence.
× eexists; split. eauto. eapply f.
eapply prefix_preserved; eauto.
- assert (diverges σ').
eapply (produces_diverges ltac:(eapply H1)); eauto.
eapply bisim_complete_diverges; eauto.
Qed.
Lemma bisim_prefix_iff S `{StateType S} S' `{StateType S'} (σ:S) (σ':S')
: prefix_eq σ σ'
↔ bisim σ σ'.
Proof.
split; intros.
- eapply prefix_bisim; eauto.
- split.
+ eapply bisim_prefix, bisim_sym; eauto.
+ eapply bisim_prefix; eauto.
Qed.